📄 Project Overview
<aside> <img src="/icons/cursor-click_gray.svg" alt="/icons/cursor-click_gray.svg" width="40px" /> Medip Software: is a software used for the visualization and analysis of CT and MRI scans. It is primarily utilized by doctors and clinicians to visualize body organs, measure their size, and identify affected lesions in CT and MRI images.
In this project, my responsibility was to enhance the classes of body organ segmentation and integrate deep learning-based interactive segmentation. To expand the segmentation capabilities of the software, I deployed vision transformers (ViT) that were trained on a large volume of CT datasets. Furthermore, I incorporated the MONAI library and utilized unsupervised learning methods to enable interactive segmentation. These algorithms enable one-click whole body segmentation from CT scans.
</aside>
🎯 Product Goals
<aside> 🎯 Develop and enhance product features.
</aside>
<aside> 🎯
Expand the segmentation classes for body organs.
</aside>
<aside> 🎯 Improve user interface and optimize deep learning models for faster inference.
</aside>
<aside> 🎯 Deploy algorithms and incorporate user feedback.
</aside>
<aside> 🎯 Conduct testing and validation.
</aside>
📥 My Contributions
<aside> 🛣️ Overseeing the project lifecycle. This includes planning and managing different stages, from conducting research to deploying the AI models.
</aside>
<aside> 🖥️ I extended the segmentation classes of body organs, increasing them from 20 to 124 classes.
</aside>
<aside> 🏗️ Add interactive segmentation based on deep learning
</aside>
<aside> <img src="/icons/groups_green.svg" alt="/icons/groups_green.svg" width="40px" /> Led a team of three junior developers in creating a robust C++-based API that integrates deep learning models with the software.
</aside>
<aside> 🛡️ Developed an innovative encryption strategy to protect the trained deep learning models, securing intellectual property of the company.
</aside>
<aside> 🏎️ I utilized TensorRT and ONNX to speed-up model inference from 48 seconds to 18 seconds, resulting in a three-fold speed improvement and enhanced performance.
</aside>
<aside> 🖥️ Design and implement a multi-thread API based on C++.
</aside>
<aside> 🏁 I collaborated with the IT team to deploy the vision transformer algorithms, verify results, and confirm post-deployment software refinement.
</aside>
🛠️ Tech Stacks Used
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/9f4fd066-9250-40d7-a6bd-90b00a6316e6/sagemaker_logo.svg" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/9f4fd066-9250-40d7-a6bd-90b00a6316e6/sagemaker_logo.svg" width="40px" />
AWS SageMaker
</aside>
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/9acd32ee-f449-47d5-a3d3-7d4f551eb43a/qt.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/9acd32ee-f449-47d5-a3d3-7d4f551eb43a/qt.png" width="40px" /> QT framework
</aside>
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/6551a5ba-e238-42c4-93e1-d9a80e75b741/python.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/6551a5ba-e238-42c4-93e1-d9a80e75b741/python.png" width="40px" /> Python
</aside>
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/435bd915-7351-43bf-b1c0-7bb37e27d23f/PyTorch_logo_icon.svg.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/435bd915-7351-43bf-b1c0-7bb37e27d23f/PyTorch_logo_icon.svg.png" width="40px" /> LibTorch & Torchscript
</aside>
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/34f66807-94c2-408b-a902-54208874ee0f/version-control-tortoise-svn.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/34f66807-94c2-408b-a902-54208874ee0f/version-control-tortoise-svn.png" width="40px" /> Tortoise SVN
</aside>
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/5e0da7cd-de65-4980-ac72-f21daf00e6a4/gitlab.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/5e0da7cd-de65-4980-ac72-f21daf00e6a4/gitlab.png" width="40px" /> Gitlab
</aside>
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/8b22e90c-6534-4563-9c2f-c10d89026041/AWS_Simple_Icons_AWS_Cloud.svg.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/8b22e90c-6534-4563-9c2f-c10d89026041/AWS_Simple_Icons_AWS_Cloud.svg.png" width="40px" /> AWS (EC2)
</aside>
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/2a3854ad-4823-48ae-a08e-18af6513219d/redmine.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/2a3854ad-4823-48ae-a08e-18af6513219d/redmine.png" width="40px" /> RedMine
</aside>
<aside> <img src="/icons/database_yellow.svg" alt="/icons/database_yellow.svg" width="40px" /> Data science
</aside>
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/89076378-e166-4668-baa0-a9b336f920b0/machine_learning.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/89076378-e166-4668-baa0-a9b336f920b0/machine_learning.png" width="40px" /> Machine Learning
</aside>
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/852d3ad9-75b9-4a94-9858-add1a882171c/deep-learning-1524275-1290822.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/852d3ad9-75b9-4a94-9858-add1a882171c/deep-learning-1524275-1290822.png" width="40px" /> Deep Learning
</aside>
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/7aab5311-e12d-41ab-ac0f-35dfee03c374/Tensorflow_logo.svg.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/7aab5311-e12d-41ab-ac0f-35dfee03c374/Tensorflow_logo.svg.png" width="40px" /> Tensorboard
</aside>
Medical images (CT, MRI, X-Ray) are extensively used for diagnosis and prognosis analysis of various diseases such as lesion and cancer. Organ segmentation is necessary in order to accurately identify the disease in the organ and measure its status. What’s more, the segmented organ can be further used for 3D printing which subsequently can be used for surgery simulation and medical education. There has not been a comprehensive medical image analysis software on the market to enable doctors and clinician to efficiently segment body organs from CT or MRI images. Currently, these segmentations are performed manually using software such as 3D slicer.
We develop Medip - a comprehensive medical image analysis solution. Advanced algorithms are integrated to automatically segment body organ from CT images. More features such as 3D modeling, mesh processing and mesh smoothing are integrated with Medip to enable 3D model rendering of body organs.
Demo Video - Showcasing 124 anatomy segmentation in Medip software