📄 Project Overview

<aside> <img src="/icons/cursor-click_gray.svg" alt="/icons/cursor-click_gray.svg" width="40px" /> TiSepX is an X-ray quantitative analysis and tissue separation solution. It provides numerical information of the lungs and lesions with the augmented images of a single X-ray image. It is used for quantification and progress monitoring of tuberculosis and COVID-19 as well as lung volumetry. The application of TiSepX is expected to continue.

</aside>

🎯 Product Goals

<aside> 🎯 1) Development of a windows-based client application

</aside>

<aside> 🎯 2) Incorporation of a novel user experience (UX) design

</aside>

<aside> 🎯 3) Simple and intuitive user interface for running deep learning models

</aside>

<aside> 🎯 4) Optimization of deep Learning models for faster inference

</aside>

<aside> 🎯 5) Continuous monitoring and validation

</aside>

📥 My Contributions

<aside> <img src="/icons/groups_green.svg" alt="/icons/groups_green.svg" width="40px" /> Led a team of 3 junior developers in creating a robust C++ based API to integrate deep learning models with the system software.

</aside>

<aside> 🏎️ Employed TensorRT and ONNX to reduce the inference time of the model from 48 seconds to 18 seconds (3 times speed up), ensuring improved performance.

</aside>

<aside> 🛡️ Developed an innovative encryption strategy to protect the trained deep learning models, securing intellectual property of the company.

</aside>

<aside> 🖥️ Incorporated C++ multi-thread for better utilization of resource

</aside>

<aside> 🛣️ Contributed in the development of product roadmap design

</aside>

<aside> 🏗️ Innovative UX/UI Design for TiSepX Client App

</aside>

<aside> 🏁 In collaboration with the IT team, deployment of the software, testing, verification, and post-deployment refinement to ensure a reliable software.

</aside>

🛠️ Tech Stacks Used

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/32e2b717-42da-4f29-90d1-4be52bff867e/C.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/32e2b717-42da-4f29-90d1-4be52bff867e/C.png" width="40px" /> C/C++

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/9acd32ee-f449-47d5-a3d3-7d4f551eb43a/qt.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/9acd32ee-f449-47d5-a3d3-7d4f551eb43a/qt.png" width="40px" /> QT framework

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/6551a5ba-e238-42c4-93e1-d9a80e75b741/python.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/6551a5ba-e238-42c4-93e1-d9a80e75b741/python.png" width="40px" /> Python

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/6240f116-b260-4d80-a4c0-7f0578226eb4/docker.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/6240f116-b260-4d80-a4c0-7f0578226eb4/docker.png" width="40px" /> Docker

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/fe96e258-89e0-4938-b211-9b1fa4c91cae/fastapi.svg" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/fe96e258-89e0-4938-b211-9b1fa4c91cae/fastapi.svg" width="40px" /> Fast API

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/435bd915-7351-43bf-b1c0-7bb37e27d23f/PyTorch_logo_icon.svg.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/435bd915-7351-43bf-b1c0-7bb37e27d23f/PyTorch_logo_icon.svg.png" width="40px" /> LibTorch & Torchscript

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/34f66807-94c2-408b-a902-54208874ee0f/version-control-tortoise-svn.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/34f66807-94c2-408b-a902-54208874ee0f/version-control-tortoise-svn.png" width="40px" /> Tortoise SVN

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/5e0da7cd-de65-4980-ac72-f21daf00e6a4/gitlab.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/5e0da7cd-de65-4980-ac72-f21daf00e6a4/gitlab.png" width="40px" /> Gitlab

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/8b22e90c-6534-4563-9c2f-c10d89026041/AWS_Simple_Icons_AWS_Cloud.svg.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/8b22e90c-6534-4563-9c2f-c10d89026041/AWS_Simple_Icons_AWS_Cloud.svg.png" width="40px" /> AWS SagkeMaker, IAM, EC2 and Lambda Function

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/2a3854ad-4823-48ae-a08e-18af6513219d/redmine.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/2a3854ad-4823-48ae-a08e-18af6513219d/redmine.png" width="40px" /> RedMine

</aside>

<aside> 🎯 Data science

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/89076378-e166-4668-baa0-a9b336f920b0/machine_learning.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/89076378-e166-4668-baa0-a9b336f920b0/machine_learning.png" width="40px" /> Machine Learning

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/852d3ad9-75b9-4a94-9858-add1a882171c/deep-learning-1524275-1290822.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/cb4bc682-8064-42da-8247-5f27942c5d27/852d3ad9-75b9-4a94-9858-add1a882171c/deep-learning-1524275-1290822.png" width="40px" /> Deep Learning

</aside>

🖌️API Design Overview

📝 Introduction

TiSepX is an X-ray quantitative analysis and tissue separation solution. It provides numerical information of the lungs and lesions with the augmented images of a single X-ray image. It is used for quantification and progress monitoring of tuberculosis and COVID-19 as well as lung volumetry. The application of TiSepX is expected to continue.

🌏 International Relation

🖇️ Methodology

Untitled

Screenshot 2023-11-24 at 6.38.56 PM.png

Untitled

Screenshot 2023-11-24 at 6.31.29 PM.png

Untitled

Untitled

Untitled

🎳 Resources


Others

Demo Video